Search results

1 – 10 of 23
Article
Publication date: 12 June 2009

H.M. Duwairi and Rebhi. A. Damseh

The purpose of this paper is to study thermophoresis particle deposition and thermal radiation interaction on natural convection heat and mass transfer by steady boundary layer…

Abstract

Purpose

The purpose of this paper is to study thermophoresis particle deposition and thermal radiation interaction on natural convection heat and mass transfer by steady boundary layer flow over an isothermal vertical flat plate embedded in a fluid saturated porous medium.

Design/methodology/approach

The governing partial differential equations are transformed into non‐similar form by using special transformation and then the resulting partial differential equations are solved numerically by using an implicit finite difference method.

Findings

Different results are obtained and displaced graphically to explain the effect of various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermal radiation parameter or dimensionless temperature ratio heats the fluid and decreases temperature gradients near permeable wall, which increases local Nusselt numbers and decreases wall thermophoresis velocities. It is also found that the effect of power indices of either temperatures or concentration enhances both local Nusselt numbers and wall thermophoresis velocities. Comparison with previously published work in the limits shows excellent agreement.

Originality/value

The paper presents useful conclusions based on graphical results obtained from studying numerical solutions for thermophoresis‐thermal radiation heat and mass transfer interaction by steady, laminar boundary layer over a vertical flat plate embedded in a porous medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2005

H.M. Duwairi

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Abstract

Purpose

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Design/methodology/approach

The conservation equations are written for the MHD forced convection in the presence of thermal radiation. The governing equations are transformed into non‐similar form using a set of dimensionless variables and then solved numerically using Keller box method.

Findings

The increasing of fluid suction parameter enhances local Nusselt numbers, while the increasing of injection parameter decreases local Nusselt numbers. The inclusion of thermal radiation increases the heat transfer rate for both ionized gases suction or injection. The presence of magnetic field decreases the heat transfer rate for the suction case and increases it for the injection case. Finally, the heat transfer rate is decreased due to viscous dissipation.

Research limitations/implications

The combined effects of both viscous and Joule heating on the forced convection heat transfer of ionized gases for constant surface heat flux surfaces can be investigated.

Practical implications

A very useful source of coefficient of heat transfer values for engineers planning to transfer heat by using ionized gases.

Originality/value

The viscous and Joule heating of ionized gases on forced convection heat transfer in the presence of magneto and thermal radiation effects are investigated and can be used by different engineers working on industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2008

H.M. Duwairi and Rebhi A. Damseh

The aim of this paper is to formulate and analyze thermophoresis effects on mixed convection heat and mass transfer from vertical surfaces embedded in a saturated porous media…

Abstract

Purpose

The aim of this paper is to formulate and analyze thermophoresis effects on mixed convection heat and mass transfer from vertical surfaces embedded in a saturated porous media with variable wall temperature and concentration.

Design/methodology/approach

The governing partial differential equations (continuity, momentum, energy, and mass transfer) are written for the vertical surface with variable temperature and mass concentration. Then they are transformed using a set of non‐similarity parameters into dimensionless form and solved using Keller‐box method.

Findings

Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increases wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit, because this phenomenon is directly temperature gradient‐ or buoyancy forces‐dependent.

Research limitations/implications

The predicted results are restricted only to porous media with small pores due to the adoption of Darcy law as a force balance.

Originality/value

The paper explains the different effect of thermophoresis on forced, natural and mixed convection heat, and mass transfer problems. It is one of the first works that formulates and describes this phenomenon in a porous media. The results of this research are important for scientific researches and design engineers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Marneni Narahari and M Kamran

The purpose of this paper is to investigate the effects of thermal radiation and viscous dissipation on steady natural convection flow of a viscous incompressible fluid along a…

Abstract

Purpose

The purpose of this paper is to investigate the effects of thermal radiation and viscous dissipation on steady natural convection flow of a viscous incompressible fluid along a uniformly moving infinite vertical porous plate with Newtonian heating in the presence of transverse magnetic field. The governing non-linear boundary layer equations are solved by using homotopy analysis method (HAM). The effects of various system parameters on velocity and temperature fields are discussed graphically, and the numerical values for skin friction and Nusselt number are presented in tabular form.

Design/methodology/approach

The problem is formulated using the Boussinesq approximation under the effects of thermal radiation and transverse magnetic field. The resulting coupled system of non-linear differential equations is solved using HAM with appropriate boundary conditions for Newtonian heating of the plate. HAM is a powerful method which provides rapidly converging series solution for the velocity and temperature fields. The effects of Prandtl number, Grashof number, suction parameter, magnetic field parameter, radiation parameter and Eckert number on the fluid velocity, temperature, skin friction and Nusselt number have been investigated.

Findings

The HAM solution has been successfully applied to find the converging series solution for velocity and temperature fields in terms of pertinent system parameters. Comparison of the exact solution results agree well with the HAM solution results in the absence of Eckert number and this indicates that the HAM solutions are accurate. It is found that the velocity and temperature profiles decreases with the increase of thermal radiation and suction parameters. An increase in the magnetic field parameter leads to a rise in the fluid temperature and fall in the fluid velocity.

Research limitations/implications

The present analysis is limited to steady state laminar natural convection flow only. Unsteady natural- /mixed-convection laminar flow in the presence of thermal radiation, chemical reaction and transverse magnetic field will be investigated in a future work.

Practical implications

The study provides very useful information for heat transfer engineers to understand the heat transfer rate when the moving vertical porous surface temperature is not known a prior. The present results have immediate relevance in the design of nuclear reactors where vertical moving porous plates are using as control rods.

Originality/value

The present research work is relatively original and illustrates the effects of thermal radiation, viscous dissipation and transverse magnetic field on natural convection flow past a uniformly moving infinite vertical porous plate with Newtonian heating.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 March 2011

Ahmet Refik Bahadir and Teymuraz Abbasov

The paper aims to investigate the effect of the electromagnetic field on the convective events which occur when electrically conducting fluid is squeezed between two parallel…

Abstract

Purpose

The paper aims to investigate the effect of the electromagnetic field on the convective events which occur when electrically conducting fluid is squeezed between two parallel disks.

Design/methodology/approach

The effects of the current occurring due to the direct voltage power supply at the thin electrical conducting fluid layer squeezed between the parallel disks, the magnetic field inducted by this current, and Ohmic heating on the squeezing process and heat convection are considered. Both approximate analytical and numerical solutions of the problem are obtained and a good agreement is observed between them.

Findings

The effects of the basic parameters such as Hartmann number, Reynolds number, the ratio of the distance between the disks to the radius of the disks, Prandtl number, Eckert number, heat conduction, and electric current on the squeezing event, and load capacity of the fluid between two parallel disks are able to be determined from the solutions. These solutions also enable the effects of the basic parameters such as Hartmann number, Reynolds number, the ratio of the distance between the disks to the radius of the disks, Prandtl number, Eckert number, heat conduction, and electric current on the squeezing event and load capacity of the fluid between two parallel disks to be determined.

Originality/value

Some important results and comparisons are presented graphically.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 July 2018

Santosh Chaudhary and Mohan Kumar Choudhary

The purpose of this paper is to investigate two-dimensional viscous incompressible magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting fluid…

Abstract

Purpose

The purpose of this paper is to investigate two-dimensional viscous incompressible magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting fluid over a continuous moving flat surface considering the viscous dissipation and Joule heating.

Design/methodology/approach

Suitable similarity variables are introduced to reduce the governing nonlinear boundary layer partial differential equations to ordinary differential equations. A numerical solution of the resulting two-point boundary value problem is carried out by using the finite element method with the help of Gauss elimination technique.

Findings

A comparison of obtained results is made with the previous work under the limiting cases. Behavior of flow and thermal fields against various governing parameters like mass transfer parameter, moving flat surface parameter, magnetic parameter, Prandtl number and Eckert number are analyzed and demonstrated graphically. Moreover, shear stress and heat flux at the moving surface for various values of the physical parameters are presented numerically in tabular form and discussed in detail.

Originality/value

The work is relatively original, as very little work has been reported on magnetohydrodynamic flow and heat transfer over a continuous moving flat surface. Viscous dissipation and Joule heating are neglected in most of the previous studies. The numerical method applied to solve governing equations is finite element method which is new and efficient.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 March 2019

Vasu B.

The purpose of this study is to present the magnetohydrodynamic (MHD) flow and heat transfer in an accelerating film of a non-Newtonian pseudo-plastic nanofluid along an inclined…

Abstract

Purpose

The purpose of this study is to present the magnetohydrodynamic (MHD) flow and heat transfer in an accelerating film of a non-Newtonian pseudo-plastic nanofluid along an inclined surface with viscous dissipation and Joule heating.

Design/methodology/approach

An incompressible and inelastic fluid is assumed to obey the Ostwald-de-Waele power law model and the action of viscous stresses is confined to the developing momentum boundary layer adjacent to the solid surface. Viscous dissipation and Joule heating on the flow of electrically conducting film in the presence of uniform transverse magnetic field is considered for the Carboxyl Methyl Cellulose (CMC) water-based nanofluid. The fluid is the CMC-water-based with concentration (0.1-0.4 per cent) containing three types of nano-solid particles Cu, Al2O3 and TiO2. The modeled boundary layer conservation equations are transformed to dimensionless, coupled and highly non-linear system of differential equations, and then solved numerically by means of a local non-similarity approach with shooting technique. To validate the numerical results, a comparison of the present results is made with the earlier published results and is found to be in good agreement.

Findings

The effects of magnetic parameter, Prandtl number, Eckert number and Biot numbers on the velocity and temperature fields are presented graphically and discussed for various values of thermo-physical parameters. It has been found that magnetic field decelerates the fluid velocity for both cases of Newtonian nanofluid and pseudo-plastic nanofluid because of the generated drag-like Lorentz force. This is of great benefit in magnetic materials processing operations, utilizing static transverse uniform magnetic field, as it allows a strong regulation of the flow field.

Research limitations/implications

The numerical study is valid for two-dimensional, steady, laminar film flow of Ostwald-de-Waele power law non-Newtonian nanofluid along an inclined plate. A uniform transverse magnetic field of strength B0 is applied perpendicular to the wall. Assume that the base fluid and the nano-solid particles are in thermal equilibrium with no slip effects. The interaction of magnetic field with nanofluid has several potential implications and may be used to deal with the problems such as cooling nuclear reactors by liquid sodium and inducting the flow meter which depends on the potential difference in the fluid along the direction perpendicular to the motion and to the magnetic field.

Practical implications

The study has significant applications in magnetic field control of materials processing systems.

Originality/value

The results of the present study may be attentiveness to the engineers and applied mathematicians who are interested in hydrodynamics and heat transfer enhancement associated with film flows.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 April 2017

Gauri Shanker Seth, Rohit Sharma, Manoj Kumar Mishra and Ali J. Chamkha

The purpose of this paper is to assess steady, two-dimensional natural convection flow of a viscoelastic, incompressible, electrically conducting and optically thick…

Abstract

Purpose

The purpose of this paper is to assess steady, two-dimensional natural convection flow of a viscoelastic, incompressible, electrically conducting and optically thick heat-radiating nanofluid over a linearly stretching sheet in the presence of uniform transverse magnetic field taking Dufour and Soret effects into account.

Design/methodology/approach

The governing boundary layer equations are transformed into a set of highly non-linear ordinary differential equations using suitable similarity transforms. Finite element method is used to solve this boundary value problem. Effects of pertinent flow parameters on the velocity, temperature, solutal concentration and nanoparticle concentration are described graphically. Also, effects of pertinent flow parameters on the shear stress, rate of heat transfer, rate of solutal concentration and rate of nanoparticle concentration at the sheet are discussed with the help of numerical values presented in graphical form. All numerical results for mono-diffusive nanofluid are compared with those of double-diffusive nanofluid.

Findings

Numerical results obtained in this paper are compared with earlier published results and are found to be in excellent agreement. Viscoelasticity, magnetic field and nanoparticle buoyancy parameter tend to enhance the wall velocity gradient, whereas thermal buoyancy force has a reverse effect on it. Radiation, Brownian and thermophoretic diffusions tend to reduce wall temperature gradient, whereas viscoelasticity has a reverse effect on it. Nanofluid Lewis number tends to enhance wall nanoparticle concentration gradient.

Originality/value

Study of this problem may find applications in engineering and biomedical sciences,e.g. in cooling and process industries and in cancer therapy.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 May 2009

M.A. EL‐Hakiem

The purpose of this paper is to highlight the effect of combined heat and mass transfer characteristics of magnetohydrodynamic (MHD) free convection flow of an electrically…

Abstract

Purpose

The purpose of this paper is to highlight the effect of combined heat and mass transfer characteristics of magnetohydrodynamic (MHD) free convection flow of an electrically conducting Newtonian fluid on circular cylinder with uniform heat/mass flux, taking into consideration the effects of uniform transverse magnetic field and thermal radiation.

Design/methodology/approach

An analysis is performed to study the momentum, combined heat and mass transfer characteristics of MHD free convection flow past a circular cylinder surface under the effect of thermal radiation with uniform heat and mass flux. By using Lie group method, the infinitesimal generators of governing equations are calculated. Using the resulting generators for the boundary value problem, the equations are transformed into an ordinary differential system. Numerical solutions of the outcoming non‐linear differential equations are found by using a combination of a Runge–Kutta algorithm and shooting technique.

Findings

Application of a magnetic field normal to the flow of an electrically conducting fluid gives rise to a resistive force that acts in the direction opposite to that of the flow. This resistive force tends to slow down the motion of the fluid along the cylinder and causes increases in its temperature and concentration and hence the respective changes in the wall shear stress, local Nusselt and Sherwood numbers as the magnetic parameter, respectively are changed with various values of angle which is measured in degrees from the front stagnation point on the surface. It is noted that these coefficients reduced as the magnetic parameter increases. Also, the effect of thermal radiation works as a heat source and so the quantity of heat added to the fluid increases, therefore the local Nusselt number reduced as the radiation parameter increases.

Research limitations/implications

An analysis is performed to study the momentum, combined heat and mass transfer characteristics of MHD free convection flow of an electrically conducting Newtonian fluid on circular cylinder with uniform heat/mass flux with the effects of uniform transverse magnetic field and thermal radiation.

Practical implications

This paper provides a very useful source of coefficient of heat and mass transfer values for engineers planning to transfer heat and mass by using electrically conducting gases with uniform heat/mass flux.

Originality/value

The combined heat and mass transfer of an electrically conducting gases on free convection flow in the presence of magneto and thermal radiation effects are investigated and can be used by different engineers working on industry, geothermal, geophysical, technological and engineering applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2015

G. Venkata Ramana Reddy and Ali J Chamkha

The purpose of this paper is to study chemical reaction and heat and mass transfer effects on steady free convection flow in an inclined porous plate in the presence of MHD and…

Abstract

Purpose

The purpose of this paper is to study chemical reaction and heat and mass transfer effects on steady free convection flow in an inclined porous plate in the presence of MHD and viscous dissipation through the application of scaling group of transformation and numerical method.

Design/methodology/approach

The fourth-order Runge-Kutta along with the shooting method is employed in the numerical solution of the governing equations.

Findings

The magnetic field parameter, the permeability of porous medium and the viscous dissipation are demonstrated to exert a more significant effect on the flow field and, thus, on the heat transfer from the plate to the fluid.

Originality/value

The problem is relatively original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 23